TTIC 31260 Algorithmic Game Theory

04/01/24

More on Nash equilibria: concepts, complexity, and algorithms

Your guide:

Avrim Blum

[Readings: Ch. 2.1-2.4 of AGT book]

First: Completing the proof for FTPL

Recall FTPL and main theorem

FTPL:

- Choose $c_0 \sim \left[0, \frac{2}{\epsilon}\right]^m$.
- Choose $a_t^{FTPL} = \arg\min_{a} \langle c_0 + c_1 + \dots + c_{t-1}, a \rangle$

Theorem: Assume $||c||_1 \le 1$ for all $c \in \mathcal{C}$, and the L_1 diameter of \mathcal{A} is D. If $c_0 \sim \left[0,\frac{2}{\epsilon}\right]^m$, then

$$E[Regret] \leq D\left(\frac{\epsilon T}{2} + \frac{1}{\epsilon}\right).$$

Setting $\epsilon = \sqrt{\frac{2}{T}}$ gives expected regret $\leq D\sqrt{2T}$.

Recall the analysis structure

FTPL:

- Choose $c_0 \sim \left[0, \frac{2}{\epsilon}\right]^m$.
 - Choose $a_t^{FTPL} = \arg\min_{a} \langle c_0 + c_1 + \dots + c_{t-1}, a \rangle$

BTPL:

- Choose $c_0 \sim \left[0, \frac{2}{\epsilon}\right]^m$.
- Choose $a_t^{BTPL} = \arg\min_{a} \langle c_0 + c_1 + \dots + c_t, a \rangle$

Show:

- Difference in expected cost $\leq TD(\epsilon/2)$, and
- Expected regret of BTPL is $\leq D/\epsilon$.

Expected regret of BTPL

Define:

- $a_t^{BTPL} = \arg\min_{a} \langle c_0 + c_1 + \dots + c_t, a \rangle$
- $a_t^{BTL} = \arg\min_{a} \langle c_1 + \dots + c_t, a \rangle$

By analysis last time, we know that for any c_0 :

$$\left\langle c_0, a_0^{BTPL} \right\rangle + \left\langle c_1, a_1^{BTPL} \right\rangle + \dots + \left\langle c_T, a_T^{BTPL} \right\rangle \leq \left\langle c_0 + \dots + c_T, a_T^{BTPL} \right\rangle$$

Also, RHS
$$\leq \langle c_0 + \cdots + c_T, a_T^{BTL} \rangle$$
.

Move c_0 terms to RHS, get:

$$\left\langle c_1, a_1^{BTPL} \right\rangle + \dots + \left\langle c_T, a_T^{BTPL} \right\rangle \leq \left\langle c_1 + \dots + c_T, a_T^{BTL} \right\rangle + \left\langle c_0, a_T^{BTL} - a_0^{BTPL} \right\rangle$$

Since \mathcal{A} has L_1 -diameter at most D and each coordinate of c_0 has expected value $1/\epsilon$, we get $E[regret] \leq D/\epsilon$.

Now to today's material

One more interesting game

"Ultimatum game":

- Two players "Splitter" and "Chooser"
- 3rd party puts \$10 on table.
- Splitter gets to decide how to split between himself and Chooser.
- · Chooser can accept or reject.
- · If reject, money is burned.

One more interesting game

"Ultimatum game": E.g., with \$4

1 2 3

Chooser:
how
much to
accept

1 (1,3) (2,2) (3,1)

2 (0,0) (2,2) (3,1)

3 (0,0) (0,0) (3,1)

Splitter: how much to offer chooser

Strategy such that if you announce it and opponent best-responds to you, you are best off.

Splitter: how much to offer chooser

1 2

Chooser:
how
much to
accept

2

3

(1,3)	(2,2)	(3,1)
(0,0)	(2,2)	(3,1)
(0,0)	(0,0)	(1, 8)

Strategy such that if you announce it and opponent best-responds to you, you are best off.

Need not be a Nash equilibrium.

Compete Leave		
Price high	(3,3)	(6,1)
Price low	(2,0)	(4,1)

Can solve efficiently. Say we're row player:

- For each column j, solve for p to maximize our expected gain s.t. j is best-response.
- Choose best.

Compete Leave			
Price high	(3,3)	(6,1)	
Price low	(2,0)	(4,1)	

Can solve efficiently. Say we're row player:

- For each column j, solve for p to maximize our expected gain s.t. j is best-response.
- Choose best.
 - For each j, solve for $p_1, \ldots, p_n \ge 0$, $\sum_i p_i = 1$, to maximize our gain $\sum_i p_i R_{ij}$ subject to:
 - For each j', $\sum_i p_i C_{ij} \ge \sum_i p_i C_{ij'}$ (the column player prefers j)

Hardness of computing Nash equilibria

- Looking at 2-player n-action games.
- 2 types of results:
- NP-hardness for NE with special properties
 [Gilboa-Zemel] [Conitzer-Sandholm]
 - Is there one with payoff at least v for row?
 - Is there one using row #1?
 - Is there more than one?
 - ...
- PPAD-hardness for finding any NE.
 [Chen-Deng][Daskalakis-Goldberg-Papadimitriou]

Hardness of computing Nash equilibria NP-hardness for NE with special properties Basic idea:

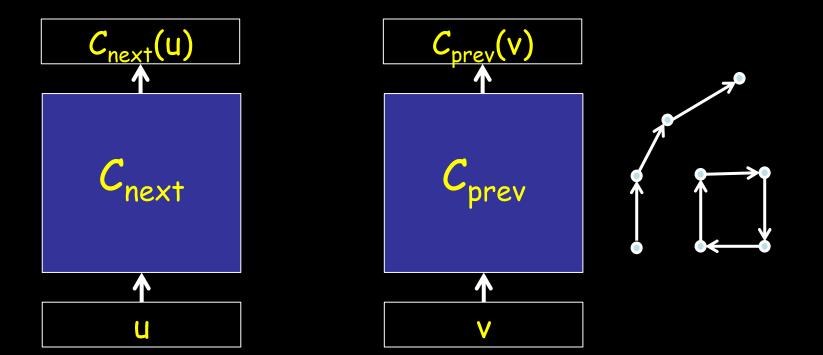
- Given 3-SAT formula F, create a game with one row for each literal, variable, & clause.
- Also a default attractor action f. $C = R^T$.
- Somehow set things up so that except for (f,f), all NE must correspond to satisfying assignments.

This is "PPAD" hard.

What's that?

Consider the following problem:

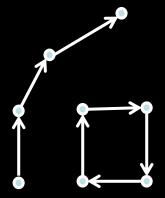
- Given two circuits C_{next} and C_{prev} , each with n-bit input, n-bit output.
- View as defining directed graph G: $u \rightarrow v$ iff $C_{next}(u) = v$ and $C_{prev}(v) = u$. (indeg ≤ 1 , outdeg ≤ 1)



Consider the following problem:

- Given two circuits C_{next} and C_{prev} , each with n-bit input, n-bit output.
- View as defining directed graph G: $u \rightarrow v$ iff $C_{next}(u) = v$ and $C_{prev}(v) = u$. (indeg ≤ 1 , outdeg ≤ 1)
- Say v "unbalanced" if indeg(v) ≠ outdeg(v).
- If Oⁿ is unbalanced, then find another unbalanced node. (must exist)

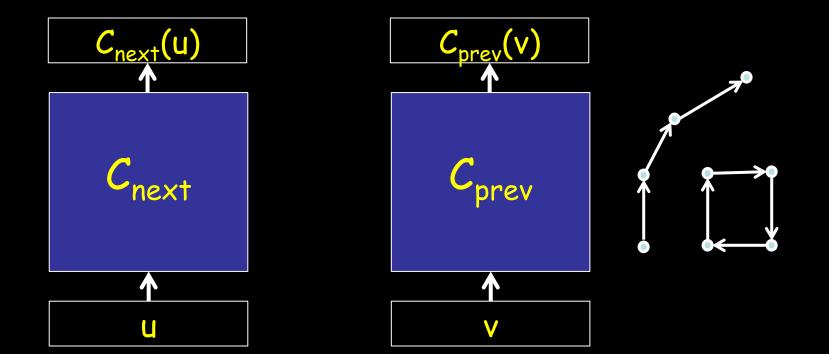
This is PPAD
"END OF THE LINE"



Why isn't this problem trivial? Say outdeg(0^n)=1.

• for(u = O^n ; u == $C_{prev}(C_{next}(u))$; u = $C_{next}(u)$;

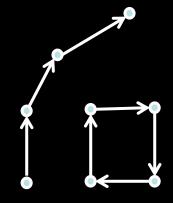
Unfortunately, the path might be exponentially long.



Not going to give proof that Nash is PPAD-hard.

Instead, give algorithm to show why Nash is in PPAD.

Also another proof of existence of NE



Preliminaries: [following discussion in Ch 2]

Given: matrices R,C with positive entries.

• For simplicity, convert to symmetric game (A,A^T) : $A = \begin{bmatrix} 0 & R \\ C^T & 0 \end{bmatrix}$

Claim: If ([x,y],[x,y]) is a symmetric equilib in (A,A^T) , then (x/X,y/Y) is an equilib in (R,C).

Use $X = \sum_i x_i, Y = \sum_i y_i$

Pf: Each player getting payoff $x^TRy + y^TC^Tx$ with no incentive to deviate.

Given nxn symmetric game A, find symm equil.

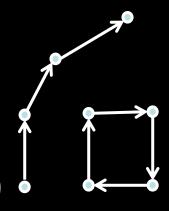
Consider the 2n linear constraints on n vars:

- $A_i z \leq 1$ for all i. $(A_i x \leq 1/Z)$ where $x_i = z_i/Z$
- $z_j \ge 0$ for all j. $z = (z_1, z_2, ..., z_n)$

Assume A is full rank, all Aii non-neg.

- · Implies have a bounded polytope.
- And all vertices have n tight constraints (at equality).

Alg will start at the origin (a vertex) and move along edges to a NE.



Given nxn symmetric game A, find symm equil.

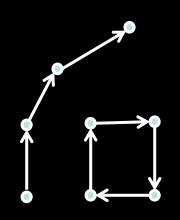
Consider the 2n linear constraints on n vars:

- $A_i z \leq 1$ for all i. $(A_i x \leq 1/Z)$ where $x_i = z_i/Z$
- $z_j \ge 0$ for all j. $z = (z_1, z_2, ..., z_n)$ If not zero...

Strategy i is "represented" if $A_i z=1$ or $z_i=0$ (or both)

What if all strategies represented?

• Either z=(0,...,0) or (x,x) is a symmetric Nash.



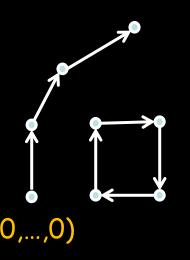
Alg: start at (0,...,0), move along edge. (Relax one of $z_j=0$ and move until hit some $A_iz=1$)

- If i=j, then all strategies represented!
- · Else i is represented twice.

Strategy i is "represented" if $A_i z=1$ or $z_i=0$ (or both)

What if all strategies represented?

• Either z=(0,...,0) or (x,x) is a symmetric Nash.



Alg: start at (0,...,0), move along edge. (Relax one of $z_j=0$ and move until hit some $A_iz=1$)

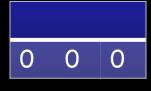
- If i=j, then all strategies represented!
- · Else i is represented twice.

In general, take strategy represented twice and relax constraint you didn't just hit.

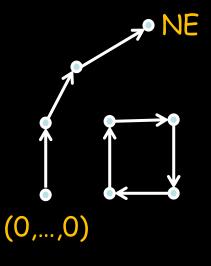
Claim: can't cycle or reach (0,...,0).

End is a Nash equilibrium.

Example:



		*
-	0	0



One implication: every non-degenerate game has an odd number of Nash equilibria.

